
Boiling Data - Comparison & Performance
2023-12-18 v5 - Dan Forsberg, Ph.D, CEO & Founder @BoilingData

Summary

Boiling uses Open Source DuckDB OLAP SQL database engine that is at least 10x more efficient data processing engine compared to
Trino/Presto/Spark and even many DWs. Together with highly scalable AWS Lambda and with Pay As You Go (PAYG) model Boiling brings
very compelling interactive analytics speed BI Tool experience and ETL processing capabilities in the same package.

You pay only for the compute when a query is running while enjoying de facto standard data formats on your own Data Lake (Parquet on S3)
with much lower storage price as well as much smaller data sizes (highly compressed data, no replication).

There is no data import needed and no vendor specific data formats. Data import (loading) happens automatically and on-demand directly into
memory next to the compute (data transfer, uncompression, and data format optimisation).

Boiling implements innovative query planning, optimisation, routing, and execution layer while utilising as many Lambda functions as needed.
Boiling evenly splits/groups all the needed data so that each Lambda function has suitable amount of data to lift from S3, process, and keep
warm for further queries.

Boiling offers secure (row, column, and time / schedule based security) data sharing with SQL VIEWs that are part of Boiling Data Catalog. You
can run SQL queries over data on S3 even without having any AWS account(s) by consuming data sets shared to You. This plays nicely e.g.
with OBTs (One Big Table) models that get warmed up in Boiling and consumed by multiple data shares. Boiling Security builds on Best Current
Practices (BCP), and Least Privilege principles on top of AWS IAM and is fully controlled by its users and helped along by Boiling.



Comparison to traditional DW and Data Lake Engines

Trad. DW Presto / Trino / Spark Boiling

Compute - Cluster on some location - Cluster on some location - On-demand Lambda functions globally where the data is located (AWS regions)

Scaling - Noisy neighbours
- Cluster sizing (manual)
- Node sizing (manual)

- Noisy neighbours
- Cluster sizing (manual)
- Node sizing (manual)

- Every query has dedicated Lambda functions
- Rapid AWS Lambda scalability (automatic)
- Number of Lambda functions allocated for a data set (automatic)
- Concurrent users on the same data set will spin up more Lambda instances
automatically

Storage - Coupled with compute - Decoupled from compute
- From S3 with every query

- Decoupled from compute
- Warmed up once from S3 into highly memory optimised format

Pricing - Licenses
- Compute 24/7
- Operations & Maint.

- Compute 24/7
- Operations & Maint.

- PAYG based on query execution time GBs (GB seconds)

Engine
perf.

- Depends on engine,
cluster, concurrent users,
indexes in use, etc.
- Throw money to get
performance

- Slowish to very slow - State of the art DuckDB with vectorised C++ engine (Open Source). Top of DB
performance stats.
- After small cold start fast; even with cold start usually faster than Presto and much
faster than Spark
- Shines on distributed search use case where tens of Lambda functions find the needle
from the hay stack concurrently
- Shines with small datasets that fit into single Lambda where all aggregations run
directly against data on memory regardless of the query complexity
- Supports combinable distributed queries, but also “single scan” distributed queries.
- “Single scan” distributed queries require transferring data between Lambda functions.
Boiling does this in compressed manner to Nx improve the performance with AWS
Lambda service

Cost of BI - Depends on amount of - Not suitable for interactive - Built for interactive analytics and cost efficiency with PAYG model



Tool usage data in storage and
compute cluster size

data exploration and
Dashboarding. Too slow
response times

Cost of
ETL usage

- Depends on amount of
data in storage and
compute cluster size
- ETL typically needs more
data and DWs replicate
the data and become very
expensive

- Presto is cost efficient but
DuckDB is faster
- Spark is very slow and
costly. DuckDB is more than
10x faster data engine
compared to Spark

- Cost efficient and performant to the point when Lambda compute PAYG Boiilng model
become more expensive than running Spot instances⇒ Boiling will address this “batch
processing” non-interactive use case with other compute than Lambda with PAYG
model as well (or with Bring Your Own Compute)



Case Study: ClickBench benchmark - 14GB Compressed clickstream data
We have a 14GB large compressed Parquet file called hits.parquet that has 100 million rows and 105 columns (wide table) and a column
with varying long URL strings (heavy). When Boiling starts to query this file, it automatically reserves 60 Lambda functions in this test run case
and evenly allocates the data for all of them. User does not have to do anything but to run the queries.

The test result timings are full-roundtrip from Laptop over WLAN from Helsinki/Finland to AWS Ireland region (eu-west-1). The timing
includes client side NodeJS SDK connection setup and calls to Boiling as well as all the query control plane handling as well as execution and
results transfer back to laptop. It thus mimics an end user perceived BI Tool session over data size that is not typical for a DW, but for
an ETL pipeline and can be described as Exploratory Data Analysis (EDA). The queries are run in serial one-by-one, but since AWS Lambda
is auto scaling and elastic we could run multiple queries in parallel - like warming up 10x of the same data set.

https://github.com/ClickHouse/ClickBench




Query performance analysis
The cold start time + 1st query runtime in this test run took about 14s. This is comparable to data loading into a database / DW. During the cold
start Boiling lifts the data from S3, uncompresses it and creates in-memory DuckDB tables. We have measured that Boiling lifts data with the
speed of 5-6 GB/s (data transfer, uncompression, and data optimisation) from S3. This means that Boiling does not create any database
indexes to speed up the query performance for some subset of queries, but uses raw database engine capabilities that DuckDB offers. This
way the results are also more comparable in general.

Combinable queries that are naturally parallelisable (like sum, min, max, count etc.) run very efficiently on Boiling. Similarly, queries that do
“find needles from the haystack” kind of searches are very fast. This is because 60 Lambda functions use totally about ~240 CPU cores
altogether to crunch through the data in the memory with top of tier state of the art OLAP database engine1.

Queries that are not combinable (like avg) need the whole column(s) worth of data to compute the result (we don’t use approximates). This
basically is a single scan over the whole data set (needed columns). For this purpose we revert back to “normal” DW architecture where leaves
(Lambda functions) do as much work as possible (filter push downs etc.) and Aggregator/Driver does the final query result computation.

With a distributed architecture like Boiling, the bottle neck in many cases is network throughput. Boiling optimises the network throughput
vs compute time to achieve best results by choosing a suitable compression algorithm for data transfers while achieving multitude
of query performance improvements compared to transferring uncompressed data. This is driven by the AWS Lambda network
bandwidth limitations2. From the query results graph you can see that the spikes are queries that require high data transfers. In these tests, we
have NOT used intermediate caching so that the tests are more comparable. However, intermediate caching is an obvious improvement for the
tests.

Boiling production deployment allows tuning the time the data set is kept warm after when it sits idle. Also the number of concurrent queries
(parallelism, like number of concurrent queries against the same data set at the same time) is tunable but many times not needed as queries
run fast after each other fluently on AWS Lambda service. Boiling directly benefits from AWS Lambda scaling so that if there are lots of users
against the same data set, AWS automatically spins up more hot Lambda instances.

2 Boiling is not limited to Lambda functions only and we’ll introduce alternative compute options in the future.
1 We believe we can still further optimise DuckDB usage in Lambda



APPENDIX: ClickBench Queries
Note that the queries are not 100% the same as in the ClickBench repository. We have added additional sorting columns and explicit naming of
the columns so that we can verify locally with DuckDB that we get exactly the same results (correctness).

Query
Num

100m
14GB

10m
780MB

1m
70MB Queries

1 14091 11017 5832 `SELECT COUNT(*) FROM parquet_scan('s3://boilingdata-demo/hits.parquet');`,

2 1213 491 188 `SELECT COUNT(*) FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE AdvEngineID <> 0;`,

3 2181 681 208 `SELECT SUM(AdvEngineID), COUNT(*), AVG(ResolutionWidth) FROM parquet_scan('s3://boilingdata-demo/hits.parquet');`,

4 2562 711 170 `SELECT AVG(UserID) FROM parquet_scan('s3://boilingdata-demo/hits.parquet');`,

5 2799 727 186 `SELECT COUNT(DISTINCT UserID) FROM parquet_scan('s3://boilingdata-demo/hits.parquet');`,

6 3781 1157 190 `SELECT COUNT(DISTINCT SearchPhrase) FROM parquet_scan('s3://boilingdata-demo/hits.parquet');`,

7 1096 521 166 `SELECT MIN(EventDate), MAX(EventDate) FROM parquet_scan('s3://boilingdata-demo/hits.parquet');`,

8 1283 510 174
`SELECT AdvEngineID, COUNT(*) FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE AdvEngineID <> 0
GROUP BY AdvEngineID ORDER BY COUNT(*) DESC;`,

9 3250 781 202
`SELECT RegionID, COUNT(DISTINCT UserID) AS u FROM parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY
RegionID ORDER BY u DESC LIMIT 10;`,

10 3823 942 198
`SELECT RegionID, SUM(AdvEngineID), COUNT(*) AS c, AVG(ResolutionWidth), COUNT(DISTINCT UserID) FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY RegionID ORDER BY c DESC LIMIT 10;`,

11 1601 528 173
`SELECT MobilePhoneModel, COUNT(DISTINCT UserID) AS u FROM parquet_scan('s3://boilingdata-demo/hits.parquet')
WHERE MobilePhoneModel <> '' GROUP BY MobilePhoneModel ORDER BY u DESC LIMIT 10;`,

12 1633 583 181

`SELECT MobilePhone, MobilePhoneModel, COUNT(DISTINCT UserID) AS u FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE MobilePhoneModel <> '' GROUP BY MobilePhone,
MobilePhoneModel ORDER BY u DESC LIMIT 10;`,

13 3141 1201 169
`SELECT SearchPhrase, COUNT(*) AS c FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE SearchPhrase <> ''
GROUP BY SearchPhrase ORDER BY c DESC LIMIT 10;`,



14 3704 1346 189
`SELECT SearchPhrase, COUNT(DISTINCT UserID) AS u FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE
SearchPhrase <> '' GROUP BY SearchPhrase ORDER BY u DESC LIMIT 10;`,

15 3168 1186 192
`SELECT SearchEngineID, SearchPhrase, COUNT(*) AS c FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE
SearchPhrase <> '' GROUP BY SearchEngineID, SearchPhrase ORDER BY c DESC LIMIT 10;`,

16 3894 767 210
`SELECT UserID, COUNT(*) FROM parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY UserID ORDER BY
COUNT(*) DESC LIMIT 10;`,

17 4757 1410 199
`SELECT UserID, SearchPhrase, COUNT(*) FROM parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY UserID,
SearchPhrase ORDER BY COUNT(*) DESC LIMIT 10;`,

18 4467 1364 177
`SELECT UserID, SearchPhrase, COUNT(*) FROM parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY UserID,
SearchPhrase LIMIT 10;`,

19 7131 1585 218

`SELECT UserID, DATE_TRUNC('minute', make_timestamp(EventTime*1000000::bigint)) AS m, SearchPhrase, COUNT(*) FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY UserID, m, SearchPhrase ORDER BY COUNT(*) DESC LIMIT
10;`,

20 1138 456 182 `SELECT UserID FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE UserID = 435090932899640449;`,

21 1134 569 210 `SELECT COUNT(*) FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE URL LIKE '%google%';`,

22 1455 701 177
`SELECT SearchPhrase, MIN(URL), COUNT(*) AS c FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE URL
LIKE '%google%' AND SearchPhrase <> '' GROUP BY SearchPhrase ORDER BY c DESC LIMIT 10;`,

23 1721 597 188

`SELECT SearchPhrase, MIN(URL), MIN(Title), COUNT(*) AS c, COUNT(DISTINCT UserID) FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE Title LIKE '%Google%' AND URL NOT LIKE '%.google.%' AND
SearchPhrase <> '' GROUP BY SearchPhrase ORDER BY c DESC LIMIT 10;`,

24 1589 884 353
`SELECT * FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE URL LIKE '%google%' ORDER BY EventTime
LIMIT 10;`,

25 1032 481 184
`SELECT SearchPhrase FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE SearchPhrase <> '' ORDER BY
EventTime LIMIT 10;`,

26 1091 489 168
`SELECT SearchPhrase FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE SearchPhrase <> '' ORDER BY
SearchPhrase LIMIT 10;`,

27 997 466 173
`SELECT SearchPhrase FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE SearchPhrase <> '' ORDER BY
EventTime, SearchPhrase LIMIT 10;`,

28 2413 757 189
`SELECT CounterID, AVG(STRLEN(URL)) AS l, COUNT(*) AS c FROM parquet_scan('s3://boilingdata-demo/hits.parquet')
WHERE URL <> '' GROUP BY CounterID HAVING COUNT(*) > 100000 ORDER BY l DESC LIMIT 25;`,



29 9452 3815 287

`SELECT REGEXP_REPLACE(Referer, '^https?://(?:www\.)?([^/]+)/.*$', '\x01') AS k, AVG(STRLEN(Referer)) AS l, COUNT(*) AS
c, MIN(Referer) FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE Referer <> '' GROUP BY k HAVING COUNT(*)
> 100000 ORDER BY l DESC LIMIT 25;`,

30 5075 1034 279

`SELECT SUM(ResolutionWidth), SUM(ResolutionWidth + 1), SUM(ResolutionWidth + 2), SUM(ResolutionWidth + 3),
SUM(ResolutionWidth + 4), SUM(ResolutionWidth + 5), SUM(ResolutionWidth + 6), SUM(ResolutionWidth + 7),
SUM(ResolutionWidth + 8), SUM(ResolutionWidth + 9), SUM(ResolutionWidth + 10), SUM(ResolutionWidth + 11),
SUM(ResolutionWidth + 12), SUM(ResolutionWidth + 13), SUM(ResolutionWidth + 14), SUM(ResolutionWidth + 15),
SUM(ResolutionWidth + 16), SUM(ResolutionWidth + 17), SUM(ResolutionWidth + 18), SUM(ResolutionWidth + 19),
SUM(ResolutionWidth + 20), SUM(ResolutionWidth + 21), SUM(ResolutionWidth + 22), SUM(ResolutionWidth + 23),
SUM(ResolutionWidth + 24), SUM(ResolutionWidth + 25), SUM(ResolutionWidth + 26), SUM(ResolutionWidth + 27),
SUM(ResolutionWidth + 28), SUM(ResolutionWidth + 29), SUM(ResolutionWidth + 30), SUM(ResolutionWidth + 31),
SUM(ResolutionWidth + 32), SUM(ResolutionWidth + 33), SUM(ResolutionWidth + 34), SUM(ResolutionWidth + 35),
SUM(ResolutionWidth + 36), SUM(ResolutionWidth + 37), SUM(ResolutionWidth + 38), SUM(ResolutionWidth + 39),
SUM(ResolutionWidth + 40), SUM(ResolutionWidth + 41), SUM(ResolutionWidth + 42), SUM(ResolutionWidth + 43),
SUM(ResolutionWidth + 44), SUM(ResolutionWidth + 45), SUM(ResolutionWidth + 46), SUM(ResolutionWidth + 47),
SUM(ResolutionWidth + 48), SUM(ResolutionWidth + 49), SUM(ResolutionWidth + 50), SUM(ResolutionWidth + 51),
SUM(ResolutionWidth + 52), SUM(ResolutionWidth + 53), SUM(ResolutionWidth + 54), SUM(ResolutionWidth + 55),
SUM(ResolutionWidth + 56), SUM(ResolutionWidth + 57), SUM(ResolutionWidth + 58), SUM(ResolutionWidth + 59),
SUM(ResolutionWidth + 60), SUM(ResolutionWidth + 61), SUM(ResolutionWidth + 62), SUM(ResolutionWidth + 63),
SUM(ResolutionWidth + 64), SUM(ResolutionWidth + 65), SUM(ResolutionWidth + 66), SUM(ResolutionWidth + 67),
SUM(ResolutionWidth + 68), SUM(ResolutionWidth + 69), SUM(ResolutionWidth + 70), SUM(ResolutionWidth + 71),
SUM(ResolutionWidth + 72), SUM(ResolutionWidth + 73), SUM(ResolutionWidth + 74), SUM(ResolutionWidth + 75),
SUM(ResolutionWidth + 76), SUM(ResolutionWidth + 77), SUM(ResolutionWidth + 78), SUM(ResolutionWidth + 79),
SUM(ResolutionWidth + 80), SUM(ResolutionWidth + 81), SUM(ResolutionWidth + 82), SUM(ResolutionWidth + 83),
SUM(ResolutionWidth + 84), SUM(ResolutionWidth + 85), SUM(ResolutionWidth + 86), SUM(ResolutionWidth + 87),
SUM(ResolutionWidth + 88), SUM(ResolutionWidth + 89) FROM parquet_scan('s3://boilingdata-demo/hits.parquet');`,

31 2105 645 185

`SELECT SearchEngineID, ClientIP, COUNT(*) AS c, SUM(IsRefresh), AVG(ResolutionWidth) FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE SearchPhrase <> '' GROUP BY SearchEngineID, ClientIP ORDER BY
c DESC LIMIT 10;`,

32 2633 1306 180

`SELECT WatchID, ClientIP, COUNT(*) AS c, SUM(IsRefresh), AVG(ResolutionWidth) FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE SearchPhrase <> '' GROUP BY WatchID, ClientIP ORDER BY c
DESC LIMIT 10;`,

33 11145 1584 233
`SELECT WatchID, ClientIP, COUNT(*) AS c, SUM(IsRefresh), AVG(ResolutionWidth) FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY WatchID, ClientIP ORDER BY c DESC LIMIT 10;`,

34 10306 2877 227 `SELECT URL, COUNT(*) AS c FROM parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY URL ORDER BY c DESC



LIMIT 10;`,

35 10725 2926 226
`SELECT 1, URL, COUNT(*) AS c FROM parquet_scan('s3://boilingdata-demo/hits.parquet') GROUP BY 1, URL ORDER BY c
DESC LIMIT 10;`,

36 4147 946 187
`SELECT ClientIP, ClientIP - 1, ClientIP - 2, ClientIP - 3, COUNT(*) AS c FROM parquet_scan('s3://boilingdata-demo/hits.parquet')
GROUP BY ClientIP, ClientIP - 1, ClientIP - 2, ClientIP - 3 ORDER BY c DESC LIMIT 10;`,

37 1588 520 155

`SELECT URL, COUNT(*) AS PageViews FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE CounterID = 62 AND
EventDate >= '2013-07-01' AND EventDate <= '2013-07-31' AND DontCountHits = 0 AND IsRefresh = 0 AND URL <> '' GROUP
BY URL ORDER BY PageViews DESC LIMIT 10;`,

38 1450 539 180

`SELECT Title, COUNT(*) AS PageViews FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE CounterID = 62 AND
EventDate >= '2013-07-01' AND EventDate <= '2013-07-31' AND DontCountHits = 0 AND IsRefresh = 0 AND Title <> '' GROUP
BY Title ORDER BY PageViews DESC LIMIT 10;`,

39 1508 533 155

`SELECT URL, COUNT(*) AS PageViews FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE CounterID = 62 AND
EventDate >= '2013-07-01' AND EventDate <= '2013-07-31' AND IsRefresh = 0 AND IsLink <> 0 AND IsDownload = 0 GROUP
BY URL ORDER BY PageViews DESC LIMIT 10 OFFSET 1000;`,

40 1645 570 158

`SELECT TraficSourceID, SearchEngineID, AdvEngineID, CASE WHEN (SearchEngineID = 0 AND AdvEngineID = 0) THEN
Referer ELSE '' END AS Src, URL AS Dst, COUNT(*) AS PageViews FROM parquet_scan('s3://boilingdata-demo/hits.parquet')
WHERE CounterID = 62 AND EventDate >= '2013-07-01' AND EventDate <= '2013-07-31' AND IsRefresh = 0 GROUP BY
TraficSourceID, SearchEngineID, AdvEngineID, Src, Dst ORDER BY PageViews DESC LIMIT 10 OFFSET 1000;`,

41 1570 500 154

`SELECT URLHash, EventDate, COUNT(*) AS PageViews FROM parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE
CounterID = 62 AND EventDate >= '2013-07-01' AND EventDate <= '2013-07-31' AND IsRefresh = 0 AND TraficSourceID IN (-1,
6) AND RefererHash = 3594120000172545465 GROUP BY URLHash, EventDate ORDER BY PageViews DESC LIMIT 10
OFFSET 100;`,

42 1535 485 170

`SELECT WindowClientWidth, WindowClientHeight, COUNT(*) AS PageViews FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE CounterID = 62 AND EventDate >= '2013-07-01' AND EventDate <=
'2013-07-31' AND IsRefresh = 0 AND DontCountHits = 0 AND URLHash = 2868770270353813622 GROUP BY
WindowClientWidth, WindowClientHeight ORDER BY PageViews DESC LIMIT 10 OFFSET 10000;`,

43 1717 674 154

`SELECT DATE_TRUNC('minute', make_timestamp(EventTime*1000000::bigint)) AS M, COUNT(*) AS PageViews FROM
parquet_scan('s3://boilingdata-demo/hits.parquet') WHERE CounterID = 62 AND EventDate >= '2013-07-14' AND EventDate <=
'2013-07-15' AND IsRefresh = 0 AND DontCountHits = 0 GROUP BY DATE_TRUNC('minute',
make_timestamp(EventTime*1000000::bigint)) ORDER BY DATE_TRUNC('minute',
make_timestamp(EventTime*1000000::bigint)) LIMIT 10 OFFSET 1000;`,




